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ABSTRACT

A characterization is given for the class of all closed loop eigen-

vector sets which can be obtained with a given set of distinct closed

loop elgenvalues using state feedback . It is shown, furthermore, that

the freedom one has in addi tion to specifyin g the closed loop eigen-

values is precisely this: to choose one set of closed loop eigenvectors

from this class. Included in the proof of this result is an algorithm

for computing the matrix of feedback gains which gives the chosen closed

loop eigenvalues and eigenvectors. A design scheme based on these results

is presented which gives the designer considerable freedom to choose the

distribution of the modes among the output components. One interesting

feature is that the distribution of a mode among the output components

can be varied even if the mode is not controllable.
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I • INT~~DUCFI(J4

One of the most ‘ popular techniques for altering the response charac-

teristics of a control system is the application of linear state vari able

feedback. In the past decade , considerable effort has been made to under-

stand exact ly what feedback has to offer and what its limitations are .

The fact that one can use state feedback to assign the closed loop

system any desired self conjugate set of eigenvalues, provided that the

open ioop syste. is controllable , is a well known and common ly used result.

For single input systems , this result is simple to derive and has been

known for some time. Bigenvalue placement in multi-input systems was

studied by Lagenhop [1], Popov [2], Wonham (3], Simon and Mitter [4] , and

Br~movsky [5] . Wonham was the first to prove that this property of state

feedback also applies to controllable multi-input systems.

Eigenvalue Assignment in multivariable systems is still not well

understood, however. Unlike the single input case, specification of closed

loop eigenvalues does not define a unique closed loop system . Many eigen-

value placement routines offer little freedom to exploit this nonuniqueness.

Exceptions are algori thms which allow one to specify a nuii~ er of components

of the closed loop eigenvectors [6] , [7) , and algorithms designed to avoid

large feedback gains ([8] chapter 6, [9]).

L . The purpose of this paper is to identify the freedom offered by state

feedback beyond specification of the closed loop eigenvalues for the case

~n which the desired closed ioop e4genvalues are distinct. In section 2

of the paper, a characterization is given for the class of all closed loop

t. eigenvector sets which can be attained with a given set of distinct closed

loop eigenvalues. It is shown , furthermore , that the freedom one has
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beyond specifying the closed loop eigenvalues is precisely this: to choose

one set from the class of “allowable” sets of closed loop eigenvectors .

Included in section 2 is an algorithm for computing the feedback gain

matrix which gives a closed loop system with the desired eigenvalues and

•igenvectors . Section 3 illustrates one use of eigenvector assignment

in control system design. Eigenvectors may be selected to adjust the

distribution of the modes among the output components . One interesting

feature is that the distribution of a mode among the output components

can be varied even if the mode is not controllable.

Throughout the paper, the following notation will be used: R, C will

denote, respectively, the field of real numbers and the field of complex

ni~~ers. For a matrix M which has n rows of numbers in R (C) ,Span (H) will

be the subspace of R~ (C”) spanned by the coluans of M, while Ker (MI

represents the Kernel of M (It should be clear from the context whether

the operations are over R or C). If a property is said to hold for i€n ,

this means that it holds for all i satisfying l~i~n. For a complex number

C, c will represent its complex conjugate. A set is described as self

conjugate if the complex conjugate of each of its members is contained in

the set.

t.
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II. SIMULTANEOUS ASS IQQ~ENT OF CLOSED LOOP EIGENVALUES AND BIGENVECIORS

Ccnsider the closed ioop state equation

— (A + BF)x(t)z(t)

obtained by applying linear state variable feedback u(t) - Fx(t) to the

system

• . ~(t) — Ax(t) + Bu(t)

where x(t)cR~, u(t )€ R”, rank B — in • To aid in the development of the

results, we associate with each number A€~ (C) the matrix

S~ [Al—A B]

and a compatibly partitioned matrix

N
1

A MA

whose coluans constitute a basis for Ker (S1}. It is quite easy to show

that the colurmis of N1 are linearly independent if B has linearl y indepen-

dent coluans, and that N1~ 
a

It is well known that F may be chosen to yield any self conjugate set

of closed loop eigenvalues provided that the (A, 8) is controllable; that

is, provided that

rank [B AB. .

or, equivalently (see (8]), that rank S1 — n for all IcC. Unless in — 1,

however, specification of a set of closed ioop eigenvalues does not uniquely

t. 
- 

define P. It is a simple matter to show that F is unique ly de fined , if it

exists, by the selection of a set distinct eigenvalues together with a

corresponding set of eigenvectors. Hence the design freedom available beyond — 

~~~~~~~~~~~~~~~~~~ - 
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eigenvalue selection is that of choosing one of the possible closed loop

eigenvector sets .

Proposition 2.1, the main result of this paper, treats the case where

the closed loop eigenvalues are distinct . For this case necessary and suf-

ficient conditions for the existence of F which yields prescribed eigen-

values and eigenvectors are given.t The proof includes a procedure for

computing F.

Proposition 2.1: Let (A~~ icn) be a self conjugate set of distinct complex

numbers. There exists a matrix F of real numbers such that (A + SF) Vj

— Aivi 
(
~ & if and only if the following three conditions are satisfied

for ien.

1. vectors v1 are linearly independent vectors in C”

2. ~~~~ whenever

3. v1 c Span(N1 I.i

I f P e x ists and r a n k B - m , t h en F i s unique.

Proof: (Sufficiency)

Suppose that v~. iEn,are chosen to satisfy the three conditions stated

in the proposition . Since v. E Span{N I for icn (condition 3), then v.

can be expressed as v1 - N1 k. for some vector k~tR
ID(CTh), which implies

i i

that

(AiI_ A )vj + B M A kj aO .
i

If F is chosen so that —M.,~ k~ — Fv~~ then [1~I - (A+BF) ]v1 - 0. What
e

remains in the proof is to show that a matrix P of real numbers satisfying

F[ir1 V
2 
. • v~] — [w~ w2 . . w ]  (2.1)

— —MA~
1i

t Although not presented in this form, this result was obtained independently
and used implicitly by H. ICimura in his treatment of pole placement using
output feedback (10] .

- ~~~~~~~~~~~~~~~~~~~~~~~~ -~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ —~ -~~ --
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can always be constructed.

If all n eigenvalues are real numbers , then ~Pj i are vectors of

real numbers and the matrix (v1 V
2 • . • v,~] is nonsingular. For this

case

F — [w1 w2 . . . w,~J [v1 v2 . . .
For the case where there are complex eigenvalues, assume that Al - A;.

The second condition in the proposition states that v1 - v; which implies

that w1 - w .  The equation which must be solved then is

~~~~~~~~~ 
V
1~

_
~V11 V) — [w 1~+j w 11 W

1~~
_
~ W11 N] (2.2)

where the columns of V and W are vi, i— 3, •..,n , and wj~ i— 3, ...,n ,

respectively. Multip lication of both sides of equation (2.2) from the

right by the nonsingular matrix

1
01

½ +1½
0

yields the equivalent equation

F[vlR V11 V] [w1~ 
Wfl N].

Clearly since v1, iEn, are independent, the columns of (viR v11 V] are

linearly independent. This procedure can obviously be applied for all

complex pairs of eigenvalues . 
-

(Necessity)

Necessity of the first two conditions follows directly from elementary

matrix theory . Furthermore if (A+BF)v~ A~v~ then [A~I - A]v~ — BFvi ;
- 

-
~ written diff erently, 

——  —.—---=~~=~~-~~~~~
-- 

~~~~~~~~~~ — ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ‘ ~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ ~~~~~~



F ~~~~~ _ _ _  ~~~~~~~~~~~~~~~~~ . -. - . - - -~ -- .- .. --- - 

~1V - 6 -

• 1~i1
[A~I_A BJ~ a 0. (2.3)

[~FVjj

Since the col~mvis of K1 form a basis for the kernel of [X~I_A B], it
i

follows that v1 c Span(N~ I.

• Since A+BF is uni quely defined by its (distinct) eigenvalues and

eigenvectors, it is clear that F is unique whenever B has independen t

column vectors.

Q.E.D.

Remark: For the case where the selected eigenvalues are not distinct ,

the conditions of Proposition are suffi cient , and the last two conditions

are necessary.

It is interesting that controllability is not mentioned in this

proposition. The equivalence of controllability and pole assignability

implies that the three conditions in Proposition 2.1 cannot be satisfied

if the uncontrollable eigenvalues are not included in the selected set of

closed loop eigenvalues. This point deserves a few words of clarification.

If (A, B) is not controllable, then there exists an open loop e&gen-

value A
~ 

and a vector Pj satisfyin g p~S1 = 0. This implies that p1 is
i

an eigenvector of AT which is invariant under feedback; i.e.

T T(A+BF) p1 — A — 1i~i .

Now for any A and v c Span {N1) there exists a matrix F (see the

proof of Proposition 2.1) satisfying (A+BF)v - Xv . Hence

I~ (p~v) a p~(A+BF)v - X(p~v)

- 
- -- ~ -~~ -~~~~~~~~ ---—-~~ —•-- — --- — _~~~~—_Y . —.

‘~ .. D ?  4 ~ ~~~~~~~~~ 
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and it follows that p~N1 0 for all A 
~

The important point is this : if the eigenvalues of the uncontrollable

sthsyste m obtained using Kalman ’s controllability decomposition (see [11]

or almost any linear systems text ) are distinct, then they may be included

in the set of selected closed loop cigenvalues without violating the dis-

tinct eigsnvalu. assumption of Proposition 2.1. Even though an uncontrollable

elgenvalue ~~ is invariant under feedback , there is considerable freedom,

as will be shown in section 3, to select V
1 

c Span {N1 I, although it is
i

clear from the last paragraph that v~ must satisfy p~v~ j~ 0

I>

L 

— .—~~ •.-.-•-~- -- I •~~~ ~~ 
, 
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III . APPLI CATION TO CONTROL SYSTEM DESIGN

Whi le the overall speed of response of the closed loop system is

determined by its eigenvalues, the “shape” of the t ransient response depends

to a large extent on the closed loop eigenvectors. In the following para-

graphs it is shown that through eigenvector selection the designer has

• considerable freedom to adjust the distribution of the modes among the

various output components . In this sense, he may “shape” the response

characteristics of the system.

Consider again the closed loop system

i(t ) = (A+BF)x(t)

together with an output equation

y(t) = Cx(t)

where Y(t)Eg
r
, rank B-in, rank C=r, m3r. In terms of the (distinct) closed loop

eigenvalues ~~~~ ien, and eigenvectors v1, IEfl , the output vector is given by

T .A. t
y(t ) = ~ Cv.(p.x )e 

1

i=l 1 1 0

where

(p1 p2 1,1T 
= 

~‘l ~2 • •

n A.
In other words , y(t) = } a~e ~~ where is proportioned to Cv 1 . Hence

i=l
if Cv1 — [1 0 . . • O]~ then the ith mode appears only in the first

output component. If = [2 1 0 . . . 0]~ it appears in the first

two outputs and is twice as large in y1(t) as it is in y2 (t) ,  etc.

Now consider the freedom available to assign Cv with , yEN1, where A

is an arbitrary number in R (C) . The columns of CN1 span R
r(CT) ,  meaning

~~~ 
— 

~~~~~~~~~~~~~ z.*á .A~~ - . ~~~~ ~~~~~~IiJ~t .&
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that cv can be arbitrarily assigned, if and only if

iAi-* Bi
rank r + rank (lI-A 8] (3.1)

L C O J

To see this, observe that there exists v ~ Span N1 such that Cv = e if
and only if there is a solution to the equation

111-A B 11v 1  lo l• I II 1 — I  ( (3.2)

L C Ojiw i L e J
A solution to this equation exists for every vector e iff

111-A Bi 111-A B 01
rank j I = r ank l I .

L c  oJ L c  o i j

The rightmost matrix has rank r + rank[AI-A B]. If (C, A) is observable,

this can be stated equivalently as follows : Cv , v c Span N 1, can be arbi-

trarily assigned provided that A is not a zero (as defined by Rosenbrock

[12]) of the transfer function matrix.

Even with the freedom to assign Cv, v€N1,which exists if equation

3.1 holds, complete freedom to assign Cv1, iEfl , where v1 are closed ioop

eigenvectors, does not exist: the vectors v~, ien, must satisfy the con-

ditions of proposition 2.1. There are a few obvious constraints on the

vectors Cvi, icu. It is clear, for example, that if m=r, A is not an

uncontrollable eigenvalue, and (3.1) helds, then Cv~=O v1=O which is

not valid. Considering the linear independence requirement, it is also

clear that the number of modes which can be restricted to a single output

component is less than or equal to n-r+l.

The case in which an eigenvalue X~ is uncont rollable is quite interesting.

In the last section it was shown that the closed loop eigenvector v~ must

satisfy p1v1 ~ 0, where A Pj = 1jP1 . If

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— . 
~~~~~
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A I — A B O  lI-A B

rank C 0 0  - rank C 0 (3. 3)

p~~~0l p
~ 

0

then there exists a vector v. ,  vjEN 1 , such that Cv. - 0 ~ p~v. 1 0
1 1 1

This implies that the mode can be eliminated entirely from the output

response (i.e. made unobservable) provided that the remaining vectors

V .., j~n, j li, can be chosen to satisfy the conditions of Proposition 2 .1.

To complete this section , we illustrate one design scheme which allows

a degree of transient response shaping. It is assumed that the uncon-

trollable eigenvalues are distinct. The steps of the procedure are as

follows:

1. Select distinct closed loop eigenvalues -- the set must include un-

controllable eigenvalues.

2. Select e1, the desired value of cv1, for each eigenvalue. This choice

should be made on the basis of the desired distribution of modes among

output components.

3. Compute v .,  w1 satisfyin g

11~
I A  

~{~i1 = 
[0

- L C O J L w . J L e .
1 1

If A. is an uncontrollable eigenvalue, the solution must satisfy

Tp1v1 ~ 0. This inequality may be forced by solving

A l—A B 0i

C o [ :] =  e~ 
, k l O

Pj  C k

if the leftmost matrix has rank r+1+rank [A11-A B) .

~~~~~~~ ~~~~~~~~
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4. If the vectors v1, i~n are not linearly independent , alter one or more

of the vectors e1, icn, and return to step 3; otherwise proceed to step 5.

5. Compute the feedback matrix and the closed loop system matrix. If the

transient response characteristics are not satisfactory alter one or

more of the vectors ej, according to the nature of the response, and

return to step 3.

Example: Consider the open loop system with matrices

-1.25 0.75 —0.75

A = 1 —1.5 —0.75

1 — l — 1.25

1 0

B —  0 1

0 1

11 0 ol
c — I  ILo 0 iJ

which has controllable eigenvalues at -1.25, -2.2S, and an uncontrollable

eigenvalue at -0.5.

To illustrate the response shaping feature of the procedure suggested

in this section, it is assumed that the objective is to shift the controllable

eigenvalues to -5., -6., and to obtain a “reasonable” response for the

initial condition [0 0 1]T, which represents a disturbance in x3(t).

Table 1 gives three different closed loop systems which have eigenvalues

= -.5, 12 
= -5 , 13 = -6, but which differ in their eigenvectors.

The first system in Table 1 was obtained using a standard modal con-

troller (see [8], chapters 5,6) of the form

• Computed answers have been rounded to three significant figures. Numbers
smaller in magnitude than 10-15 are shown as zero.

~~~~~~~~ ~~~~~~ 
-.

~~~
- -‘~~~~~~~~~ ~L~.L!i.- ~~~~~~~~ ~~
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u(t) - (a1g1p~ + cz2g2p~)x(t)

where the following equations hold :

T TA p1 — -l.25p1, p1p1 — 1

- 

(A + Bg1p~)p2 — -.2.2Sp2, p~p2 — 1

The constants a1, a2 and the vectors g1, g2€R
1’ were chosen to shif t one

eigenvalue from -1.25 to -5.0, and then the second eigenvalue from -2.25

to -6.0, and to minimize the gain required for each shift. Figure 1 shows

the response of this system to a unit disturbance in x3(t) .

The response of the first system is not satisfactory because of the

rather large slow mode component in y1(t). This mode is uncontrollable,satisfies

equation (3.3), and is eliminated in the output of System 2 (Figure 2). In this

system e2, e3 were chosen to be equa l to cv~, cv~, where v~, v~ are the

eigenvectors corresponding to 12, 13 in system 1. Note that the entries

of cv~ have opposite signs.

To further illustrate the spirit of the procedure, it is assumed that

a positive going transient in y1(t) is desired for a positive disturbance

in a x3(t). This is accomplished in system 3 by simply choosing e2 to have

components of the same sign, in this case e2 = [.5 51
T Figure 3 gives

the response of the third system.

7— -~ --~~~
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IV. CONCUJSIC)NS

Necessary and sufficient conditions for simultaneous eigenvalue , eigen-

vector assignment have been given for the case where the desired eigenvalues

are distinct. The corresponding design procedure based on this result gives

the designer considerable freedom to select the distribution of modes (whether

controllable or not) among the output components.

The shortcoming of the design procedure is that it is ad hoc in nature.

In future research, an attempt will be made to develop a systematic design

procedure allowing the designer to “shape” in some sense the average tran-

sient response characteristics of the system.

.3

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ .-_ .4 .~~~~ . ~~~~~~~~~~~
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Selected Vectors Closed Loop Matrix

~~ 
e2 e3 A+BF

• -5.78 5.28 -7.44
modal control

System 1 
• 

used -.0784 -.421 -4.79

-.0784 .0784 -5.29

0 -.889 .990 -5.78 0 -2.16

System 2 0 .323 .0990 -.0784 -.5 -4.72

-.0784 0 -5.22

0 .5 .990 -6.11 0 1.11

System 3 0 .5 -.0990 -.111 -.5 -4.39

-.111 0 -4.89

Table l

t..

~ 
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